
OPCUG

Computer – It is all

about the bits
STEPHANE RICHARD

Questions that will be answered in

this presentation

 Why are bits so important in

computing?

 How does a computer store text,

number and images?

 What are the major components in a

computer?

 How does a Central Processing Unit

(CPU) work?

 What is the assembly language?

 What is miniaturization?

 If you have a question during the

presentation, please interrupt

First thing first – what is a bit?

 A bit or binary digit is the smallest unit of data that a computer can

process and store.

 A bit is always in one of two physical states, similar to an on/off light

switch.

 The state is represented by a single binary value, usually a 0 or 1.

However, the state might also be represented by yes/no, on/off or

true/false.

 For example. the Transistor-Transistor Logic (TTL) hardware is powered

with 5 V and uses signal level < 0.8 V as False and > 2 V as True. If the

signal level is between 0.8 and 2 V, the result is not guaranteed.

 One bit only has limited utility, but many bits are very useful!

 What they mean depends on the reader, for example

What could this string of bits

01001100 mean?
 It could represent the decimal number 76 or hexadecimal 4C.

 It could represent the letter L in the American Standard Code for Information
Interchange (ASCII) character code.

 It could tell a Motorola 6800 Microprocessor to increment the accumulator A by 1.

 It could tell an Intel 8080 Microprocessor to move the content of register C to
register H.

 The Red Green Blue (RGB) color model use 8 bits to code each of the red, green,
and blue colors:

 It could represent this red color in the RGB color model.

 It could represent this green color in the RGB color model.

 It could represent this blue color in the RGB color model.

 It could mean peace for the Gray Alien.

 So who knows what it mean, it is the reader of the string of bits that will decide!

How does a computer store color?
 There are various models available to encode color. The

most common is the Red Green Blue (RGB) color model.

 It uses 8 bits to encode of the each of the red, green, and

blue colors for a total of 24 bits.

Color Red Green Blue

11111111 (255) 11111111 (255) 11111111 (255)

00000000 (0) 00000000 (0) 00000000 (0)

11111111 (255) 00000000 (0) 00000000 (0)

00000000 (0) 11111111 (255) 00000000 (0)

00000000 (0) 00000000 (0) 11111111 (255)

00000000 (0) 00000000 (0) 01001100 (76)

11111111 (255) 11111111 (255) 00000000 (0)

11001010 (202) 00110110 (54) 11000100 (196)

How does a

computer

store and

process text?
 By using

standardized
character coding
such as ASCII
(shown on the
right) and other
character coding
tables.

 Letters, numbers,
and symbols
become string of
bits.

Sample

Character

ASCII (0-127) Extended ASCII (0-255)

Windows-1252

Notes

a 97, 0x61 97, 0x61

A 65, 0x41 65, 0X41 Difference of 32, 0x20 between lower

and upper case code

b 98, 0x62 98, 0x62

B 66, 0x42 66, 0x42

c 99, 0x63 99, 0x63

C 67, 0x43 67, 0x43

< 60, 0x3C 60, 0x3C

= 61, 0x3D 61, 0x3D

> 62, 0x3E 62, 0x3E

è 232, 0xE8 Can be entered by pressing the Alt

key and using the number keypad to

enter decimal value with a leading 0,

i.e. è is Alt-0232

é 233, 0xE9

É 201, 0xC9

The complete list can be found at https://www.ascii-code.com/

Funny story – reading 2D bar codes

 Getting character coding to work can be
hard!

 I was the Director of the Project Management
Bureau in Passport Canada and one of the
project I was responsible for was to add a 2D
bar code to Passport Canada forms.

 We needed to buy about 1,300 2D scan guns.

 The contract included testing of the proposed
2D scan gun.

 The proposed gun did not read the code
correctly. A technician showed up with a 3
inches binder of 2D bar code to configure the
gun. He started to configure and test...

 He used all the configurations in the binder
and none worked. We move to the next
bidder.

How does a computer store and

process numbers?

 There are various types of number each with a different way to store

and process.

 For human being:

 Stored using character coding, such as ASCII, composing the number.

 Very inefficient but easy for human being to read the number.

 To process number, need to be converted to a binary number, more on

that in the next slides.

 Depending on the character coding used, each digits take 8 to 16 bits.

 Example: the number 19,534 encoded in ASCII would be using 6 bytes

of memory (48 bits):

 0x31, 0x39, 0x2C, 0x35, 0x33, 0x34

Binary Coded Decimal (BCD)

 In computing and electronic systems,

Binary Coded Decimal (BCD) is a class

of binary encodings of decimal

numbers where each digit is

represented by a fixed number of bits,

usually four or eight. Sometimes, special

bit patterns are used for a sign or other

indications (e.g. error or overflow).

 There are many BCD coding table, the

most common is shown on the right. Its

advantage is the easy conversion to

ASCII by adding 0x30, but still need to

be converted to binary to be

processed.

Decimal Digit BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Integer number

 An integer is a whole number that
does not include decimal parts or
fraction.

 The number can be positive,
negative, or zero.

 Examples of integers are: -5, 1, 5, 8,
97, and 3,043.

 Examples of numbers that are not
integers are: -1.43, 1 3/4, and 3.14.

 For signed number (i.e. negative), a
bit is selected to indicate a negative
number and special coding is used
so that adding -X with X gives 0
without any other processing.

Number of bits Range

8 0 to 255

8 signed -128 to 127

16 0 to 65,535

16 signed -32,768 to 32,767

32 0 to 4,294,967,295

32 signed -2,147,483,648 to 2,147,483,647

64 0 to 18,446,744,073,709,551,615

64 signed -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Floating Point Number

 If you want to store and process a number that does not fit in the integer

range OR has a decimal parts or fraction, you need to use a floating point

data type.

 The floating point, also known as the scientific notation, has the following form

mantissa * baseexponent.

 Example the mass of the proton can be expressed as 1.67262192369 ×10−27 kg.

 For a computer, the base 2 is used, an overall number of bits is selected, then

bits are reserved for:

 sign and value of the mantissa. The first bit has always a value 1 and it is not stored.

 sign and value of the of the exponent.

 Some exponent and mantissa value have special meaning such as infinity, Not a

Number, overflow, etc.

Standard Floating Point representations

bits Name Range

32 Single or

float

-3.4028237 E+38 to -1.175494 E-38

0

1.175494 E-38 to 3.4028237 E+38

up to 7 significant digits

I did a Radar

Signal Processor

project that used

single data type,

but the answers

were wrong. We

had to change all

the variables to

double precision

which gave the

correct answers

but double the

memory needs.

Next, how can a

bug in a CPU be

problematic...

64 Double -1.797693134862315 E+308 to -2.225073858507201 E-308

0

2.225073858507201 E-308 to 1.797693134862315 E+308

With up to 15 significant digits

80 Extended -1.18 E+4932 to -3.65 E−4951

0

3.65 E−4951 to 1.18 E+4932

With up to 21 significant digits

1994 Pentium Floating Point Division

bug

 The Pentium FDIV bug is a hardware bug affecting the

floating-point unit (FPU) of the early Intel Pentium

processors.

 In order to improve the speed of floating-point division

calculations on the Pentium chip, Intel opted to replace

the shift-and-subtract division algorithm with the

Sweeney, Robertson, and Tocher (SRT) algorithm.

 Missing values in a lookup table used by the FPU's

floating-point division algorithm led to calculations

acquiring small errors.

 Because of the bug, the processor would return incorrect

binary floating point results when dividing certain pairs of

numbers. Intel replaced the chips for free.

The bug in the FPU resulted in the

wrong answer in the fifth significant

figure!

How does a computer store

image?

 There are two main ways:

 Bitmap

 Vector

 They both have advantages and disadvantages.

 But both end-up as string bits to be displayed.

Bitmap images

 Bitmap images are broken down into tiny elements called pixels
(short for “picture element”).

 Each pixel has a color coded using a color code such as Red
Green Blue (RGB).

 The number of pixels in an image is called the image resolution.

 Image resolution = Width * High.

 Image size = resolution * number of bits per color.

 Bitmap image can be very large (e.g. 5184 X 3456 X 24 bits for
the color = 53 GB!), but can be compressed, with or without loss
depending on the algorithm, to reduce size.

860 X 568 = 488,480 pixels

File save as BMP format (no compression) 679 KB

File save as JPG format (compression with loss) 83.8 KB

Bitmap example zoomed 800%

Vector images

 A vector image is made out of shapes, straight lines, and curves.

 In vector images, coordinates and geometry define different parts
of the image.

 Vector images can be scaled, moved, rotated, filled, etc. as it is
redrawn from the shapes.

 Vector are more efficient than bitmaps at storing section with the
same color because they do not need to store every pixel, they just
store the object type, coordinates, and color.

 To be displayed or printed, vector image must be rendered into
bitmap.

 Most 3D game are polygon based, and much of the Graphic
Processing Unit pipeline is dedicated to rendering polygons.

Vector image example – from

PowerPoint – zoom 400%

So, we have seen how computer store all kind of information

using string of bits. Now, how does a computer process

string of bits?

Computers process string of bits

 By reading and writing string of bits from and to memory,

network card, secondary storage such as hard disk drive, solid

state drive, optical drive, tape drive, etc.

 By moving or copying string of bits between the computer main

memory and registers in the Central Processing Unit (CPU).

 By setting the string of bits to a specific value.

 By testing the string of bits and deciding what to do next.

 By manipulating the string of bits with arithmetic and logical

operators (e.g., add, subtract, and, or, shifting, rotating, etc.).

 So, it is all about how many bits and how fast bits can be

processed in the CPU, stored in memory or secondary storage,

displayed, etc.

Comparing Matter and Computer

 Matter is made of:

 Molecules which are

made of

 Atoms which are made

of

 Proton(s), Neutron(s),

and Electron(s)

 Computer is made of:

 Circuits and Boards

which are made of

 Logic gates which are

made of

 Transistors and other

electronic components

Elementary Logic Gates

AND

OR

NOT

In Out

0 1

1 0

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

Gates built from Elementary Gates

NAND

NOR

XOR

XNOR

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

2 bits Full Adder

 Inputs: A, B, Carry-in

 Outputs: Sum of A and B, Carry-on

A B Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Example adding 3 and 7

Cout Cin

A B

SUM

0 0 1 1A=3 0 1 1 1B=7

0Cout Cin

A B

SUM

Cout Cin

A B

SUM

Cout Cin

A B

SUM

1 0 1 0SUM=10

8 4 2 1

111

While this

design

works, we

need to

wait for the

carry to

propagate

through the

circuit. A

Carry Look

Ahead

circuit is

used to

resolved

this

problem.

Wonder

what the

last Cout is

used for? It

is used to

indicate an

overflow.

With 4 bits,

the

maximum

number is

15.

Example of more complex circuits

A B C D Display a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 1 0 1 1

How do you fit

millions of

transistors and

electronic

components in

about 1 inch

square?

Miniaturization!

About 1,000

human hairs

would fit on

this width!

How is a semiconductor wafer built?

Through multiple stages

of masking, etching,

and diffusion, the

sublayers on the chip

are created. The final

stage lays the top metal

layer (usually

aluminum), which

interconnects the

transistors to each other

and to the outside

world.

Component Miniaturization -

Resistor

Size and shape will vary depending

on the power requirements

Component Miniaturization -

Transistor

Basic Computer Block Diagram

Input

Devices

Memory

Unit

Output

Devices

Central

Processing

Unit (CPU)

Secondary

Storage

Keyboard,

mouse,

scanner,

network card,

etc.

Printer, video

card, network

card, etc.

Hard disk drive, solid state drive,

optical drive, tape drive, etc.

All the arrows are data

and control lines, and

sometimes include

additional hardware

and most likely does

run at the same speed

Intel x86 CPU Architecture -

General-Purpose Registers (GPR)
 Inside a CPU, register are storage locations and are accessed by instructions to

read, modify and store values.

 General Purpose Registers:

 AX: Accumulator register, used in arithmetic operations.

 BX: Base register, used as a pointer to data.

 CX: Counter register, used in shift/rotate instructions and loops.

 DX: Data register, used in arithmetic operations and I/O operations.

 Names varies depending on how many bits:

 R-X, 64 bits, for example RAX is a 64 bits accumulator register

 E-X, 32 bits

 -X, 16 bits

 -H and -L, 8 bits

ALAH
AX

EAX
RAX

Intel x86 Architecture – Other

Registers

 Instruction Pointer (IP): contains the address of the next instruction
to be executed if no branching is done.

 EFLAGS: a 32-bit register used as a collection of bits representing
Boolean values to store the results of operations and the state of the
processor.

 Segment Registers for memory access:

 Segment Stack Pointer register (SP): Pointer to the top of the stack.

 Stack Base Pointer register (BP): Used to point to the base of the stack.

 Source Index register (SI): Used as a pointer to a source in stream
operations.

 Destination Index register (DI): Used as a pointer to a destination in
stream operations.

Central

Processing

Unit Basic

Block

Diagram

Instruction

Fetcher (IP)

and

Decoder
To MemoryMemory

Interface

Registers

Arithmetic
Logical

Unit

Data

Control

Modern CPU includes a

hierarchy of caches,

Level 1, 2 and 3) that

provide most recently

used data to the CPU

instead of getting the

data from the memory.

Clock

Memory, Machine Code, Assembly

Language Example for Intel Pentium

Memory

B8

22

11

00

FF

01

CA

31

F6

53

Instruction

Pointer (IP)

Machine Code

B8 22 11 00 FF

Assembly Language

movl $0xFF001122, %eax

High level

computer

languages such

C, C++, Pascal,

Visual Basic, etc.

generate

Assembly Code

statements which

are translated to

Machine Code

unique to a CPU

type.
01 CA

31 F6

53 pushl %ebx

addl %edx, %ecx

xorl %esi, %esi

+4

+1

+1

+0

The opcode is shorter than mov eax, 0, only 2 bytes, and the processor recognizes the special case and treats it as a mov eax, 0 without a false read dependency on eax, so the execution time is the same.

This XOR would

always result in

0, but op code

shorter than

doing mov esi, 0

Hardware and

Software Stack

Hardware (CPU, Memory, Bus, etc.)

Machine Code

High-Level Language (e.g. C, Pascal, Basic, etc.)

Assembly Language

Object Oriented and Visual Languages (e.g. C++,

Visual Basic, etc.)

Operating

System (OS)

and Various

Libraries

C language

#include <stdio.h>

int main()

{

printf("hello world\n");

return 0;

}

Assembly

.LC0: .string "hello world\n"

.globl main

.type main, @function

main:

pushq %rbp

movq %rbp, %rsp

movl %edi, $.LC0

call printf

movl %eax, $0

ret

Intel CPU addressing bug

 In 1990, one of my friend was creating software for submarine detection.

 However, its program froze the Intel 80286 CPU.

 He looked at the assembly code generated by the C compiler and started to

remove instructions until he was left with one instruction that froze the CPU.

 He called Intel and explained the problem. The Intel representative did not

believe him.

 He said – start Debug and enter the following code and run it.

 The Intel representative said – Hum, will call you back...

 Intel never did call him back, but Intel told all the compiler producers to never
generate this instruction.

 Problem solved!

The execution of a program by a

CPU can be interrupted
 In digital computers, an interrupt (sometimes referred to as a trap) is a request for

the processor to interrupt currently executing code, so that the event can be
processed in a timely manner.

 If the request is accepted, the processor will suspend its current activities, save its
state (i.e. registers) in memory, and execute a function called an interrupt handler
to deal with the event.

 This interruption is often temporary, allowing the software to resume normal
activities after the interrupt handler finishes, although the interrupt could instead
indicate a fatal error.

 Interrupts are commonly used by hardware devices to indicate electronic or
physical state changes that require time-sensitive attention.

 For example moving the mouse or pressing a key on the keyboard generates
interrupt and the data is stored in memory controlled by the Operating System.

When I crashed Windows 3 and the

Intel 386 CPU

 One of the variable was for a string
of characters. However, the
programming language I was
using, C, does not check if the
string of character grows longer
then the allocated space.

 This type of error is called a buffer
overrun.

 So, program worked OK for short
string, however a long string
crashed Windows 3 and the Blue
Screen of Death said that I tried to
execute an instruction that does
not exist on the Intel 386 CPU.

Memory for

Variables

Memory for

Code

String Variable

Memory for

Variable

Memory for

Code

String Variable

Comparison between 2 Microprocessors

released 17 years apart

 Motorola 6800

 Released in 1972

 8 bits

 6 registers (3 8-bit and 3 16-bit)

 4,100 transistors

 1 MHz, 40-pin chip

 Intel 80486

 Released in 1989

 32 bits

 24 registers (6 16-bit, 10 32-bit, 8 80-bit)

 1.2M transistors

 100 MHz, 168-pin chip

Motorola 6800 chip

Interrupt

Request

A0 to A15

Memory

Address

D0 to D7

Memory

Data

Memory

Read or

Write

Reset

Intel 40486 chip

Instructions Grouping Motorola 6800

 Data Transfer Group:

 Transfer data between registers and memory

 Arithmetic Group:

 Add and subtract (NO MULTIPLY OR DIVIDE – NEED TO DO WITH CODING)

 Increment and decrement

 Logical Group:

 Compare, XOR, OR, AND, NOT, Rotate

 Branch Group:

 Test and branch

 Call and return from subroutine

 Miscellaneous Instructions:

 No Operation, Wait for Interrupt

Instructions Grouping Intel 80486

 Integers instructions (32 bits):

 Transfer data and exchange

 Binary arithmetic (add, subtract,
multiply, and divide)

 Decimal arithmetic (BCD to binary)

 Logical (AND, OR, XOR, NOT, etc.)

 Shift and Rotate

 Bit and Byte (set, test, etc.)

 Control transfer

 String instructions

 Flag control instructions

 Segment registers

 Floating-Point Instructions (80 bits):

 Data Transfer and exchange

 Basic Arithmetic (add, subtract,

multiply, and divide)

 Comparison

 Transcendental (e.g., sine, cosine,

etc.)

 Load Constants (e.g. , pi, etc.)

 Floating Point Unit Control

 System Instructions:

 Support for Operating Systems

(e.g. protect memory)

Today, we have multicore CPU

Multicore CPU

are great, but

they need to be

used properly by

the operating

system or you

end-up with this

situation...

	Slide 1: OPCUG Computer – It is all about the bits
	Slide 2: Questions that will be answered in this presentation
	Slide 3: First thing first – what is a bit?
	Slide 4: What could this string of bits 01001100 mean?
	Slide 5: How does a computer store color?
	Slide 6: How does a computer store and process text?
	Slide 7
	Slide 8: Funny story – reading 2D bar codes
	Slide 9: How does a computer store and process numbers?
	Slide 10: Binary Coded Decimal (BCD)
	Slide 11: Integer number
	Slide 12: Floating Point Number
	Slide 13: Standard Floating Point representations
	Slide 14: 1994 Pentium Floating Point Division bug
	Slide 15: How does a computer store image?
	Slide 16: Bitmap images
	Slide 17: Bitmap example zoomed 800%
	Slide 18: Vector images
	Slide 19: Vector image example – from PowerPoint – zoom 400%
	Slide 20: Computers process string of bits
	Slide 21: Comparing Matter and Computer
	Slide 22: Elementary Logic Gates
	Slide 23: Gates built from Elementary Gates
	Slide 24: 2 bits Full Adder
	Slide 25: Example adding 3 and 7
	Slide 26: Example of more complex circuits
	Slide 27: How do you fit millions of transistors and electronic components in about 1 inch square?
	Slide 28: How is a semiconductor wafer built?
	Slide 29: Component Miniaturization - Resistor
	Slide 30: Component Miniaturization - Transistor
	Slide 31: Basic Computer Block Diagram
	Slide 32: Intel x86 CPU Architecture - General-Purpose Registers (GPR)
	Slide 33: Intel x86 Architecture – Other Registers
	Slide 34: Central Processing Unit Basic Block Diagram
	Slide 35: Memory, Machine Code, Assembly Language Example for Intel Pentium
	Slide 36: Hardware and Software Stack
	Slide 37: Intel CPU addressing bug
	Slide 38: The execution of a program by a CPU can be interrupted
	Slide 39: When I crashed Windows 3 and the Intel 386 CPU
	Slide 40: Comparison between 2 Microprocessors released 17 years apart
	Slide 41: Motorola 6800 chip
	Slide 42: Intel 40486 chip
	Slide 43: Instructions Grouping Motorola 6800
	Slide 44: Instructions Grouping Intel 80486
	Slide 45: Today, we have multicore CPU
	Slide 46: Multicore CPU are great, but they need to be used properly by the operating system or you end-up with this situation...
	Slide 47

