. . iﬁ . i i H%ﬁ : : S -

: i

Eﬁ? il =
ailing - . . o
- " o1 Ses-lrso. -
SR = R ﬁﬁ-?ﬁ'ﬁu i ﬁ?‘ ;.'&? e ﬁ:{f‘ ?}@% OO 5

JOHNPUB 4.2: A USER'S PERSPECTIVE
2% [T'S RENEWAL TIME #*#*#*
By Bonnie Carter

For most of us it is membership renewal time. If the
expiry date on your mailing label is 91-03-31, please
complete the form on the back of the Newslelter and
bring it to the meeting. If you are unable to attend, send

the form and a cheque to The OPCUG, 3 Thatcher Street,
Nepean, Ont., K2G 156,
For those new members who joined in October 1990
_or _after, your membership runs for a period of 12
months. If you believe that the expiry date on your label
is incorrect, please contact Harald Freise at 828-3411.

1991 OPCUG MEETING SCHEDULE

General meetings of the Ottawa PC Users' Group for
March, April, May and September will be held at 8:00 p.m. on

¢ ihe last TUESDAY of the month at Rideau High School, main

auditorium, 815 St.Laurent Blvd. Park your car in the lot behind
the building.

Due to renovations at the school, date and location of the
June and August meetings have not yet been fixed. Beginner and
special interest group sessions preceed the general meetings and
run from 7 to B p.m.

The tentative schedule of guest speakers is as follows:
March JAMIE SIMZER - WordPerfect Office, DataPerfect,
PlanPerfect and other WordPerfect products
April WINDOWS 3.0 - This presentation by Microsoft itself

May HUGH CHATFIELD - Computer-generated music

June DATAEASE - DOS-based relational database

Aug. IBM - Celebration of the 10th anniversary of the
release of the first IBM PC

Sept. VIRUSES & COPYRIGHTS - Presentation by RCMP

Oect. WORDPERFECT - Its integration with Windows

Presentations By Members

During the second half of each meeting, members are invited
to give short presentations on applications, software, ete. Call
Terry Mahoney at 225-2630 if you have something you would
like to present or are willing to assist with the planning.

Can you borrow an overhead projector andfor a sayette for
use al our meetings? If so, please phone Paul Green, Facilities
Coordinator, 747-7862. Help us keep our costs down.

ﬁ L N

I occasionally log on to the OPCUG"s bulletin board, The
PUB (okay, okay, about four or five times a day!) There was a
time when I would consistently use up my daily time allotment
and find myself pleading with Chris Taylor, the Assistant SysOp,
for more PUB time. Alas! Chris stood firm in his commitment
to at least give some PUB time to other users.

Then JOHNPUB came to my rescue. For those of you who
are asking yourselves, "What's a JOHNPUB?", basically it’s an
automated off-line system which takes care of your messaging
chores. From its crude and simple beginnings in Version 1.0,
JOHNFUB has evolved into a very sophisticated application
which now offers a multitude of functions to simplify your PUB
SE8510ns.

The installation process is straightforward and appealing.
Everything is in colour and bilingual help is available at the
touch of a key. I simply type "install" after unzipping the files
and answer the questions on the screen to tailor JOHNPUB to
my own requirements.

To run JOHNFPUB, I type "m" at the prompt line. From that
moment on, JOHNPURB takes over. It searches every message
area that 1 chose during the installation and retrieves my personal
mail or any public messages that have been added since my last
logon. And it does this swiftly and accurately. No fuss, no muss.

Pub.txt is the working file where all new messages are
stored. When JOHNPUB finishes a session, it automatically logs
me off the Board and sends me back to my PUB subdirectory.
I then load pub.txt into my favourite ASCII editor, where [write
replies and messages and give other instructions that [want
JOHNPUB to carry out.

To ly o a %ﬂ_ n
mﬁsage,ﬁi{nply pt | = " -
#ireply alone on the ﬁ%ﬁ = R
line directly under the i e 4
message, type in my | % -
reply and finish it | 16 |
with the # character. [¥ ;
no longer need Lo H
select the appropriate | e
message area o

manually type in the
name of the recipient

(Cont’d on Page 2)

Meetings are held at Rideau High School, 815 Si. Laurent Blvd, Ottawa
Last Tuesday of the month - 8:00 p.m. to 10:00 p.m.
No meetings in July and December

JOHNPUB 4.2
(Continued from Page 1)

or the subject of the message. When
answering the last message at the end of
pub.txt, I make sure that [put it above the
end-of-file marker because JOHNPUR will
not run without it. I can also reply privately
to any public message, a feature that is not
possible on The PUB. I don’t even have o
worry about the size of my messages.
JOHNPUB automatically splits them into
4K chunks if

Sometimes [run JDHNPUB solely lo
capture messages | am expecting. However,
the new pub.ixt file overwrites the old one.
If 1 still have messages from the previous
s¢ssion to answer, | simply rename pub.ixt
publ.txt before running the session.

JOHNPUB has many interesting
features. The #encl function appends any
file that I wish to enclose with a message.
Also, each of my sessions on The FUB,
from the very first character to the "NO
CARRIER" sign, is captured in a file called
pub.out. If something should go wrong
while JOHNPUB is running, I can usually
find out what the problem is by examining
pub.out.

The log files store all messages
captured or sent by JOHNPUB, broken
down by message areas. For example, g.log
and p.log store all my messages from the
General and Private areas respectively.
When these files reach 100K in size,
JOHNPURB renames them so that their size
remains manageable. Ii's a good idea to

clean them of all unwanted messages
regularly.
With JOHNPUB, it's possible to

download files and automatically log off
when finished. I merely specify the names
of the files 1 wish to download. When |
don’t know the file area for a particular
file, JOHNPUB finds it for me. Example:

#loc xxoox.zip

#pget xxx.zip
Uploading files is similar, 1 specify the
name of the file and its description.

The wait command is very convenien.
If I wish to run JOHNPUB at 2:00 in the
moming, when The PUB is not busy, I
simply enter #wait 02:00 in pub.txt,
knowing that my "loyal servant” will be
working while I sleep.

JOHNPUB can also resel my user
configuration file on The PUB (e.g., the
page prompt), locate sirings of text in

various files, filter out messages I don't
wish to receive, retrieve messages from
specified message areas, capture lists of
files uploaded after a certain date, etc.

JOHNPUB has become my ally, and I
highly recommend that you try it out. You
can find it on The PUB in File Area 1,
Communication Applications.

I still log on "occasionally”, bul now
my presence on The PUB is but a flash.
I've heard rumours that the SysOp is
considering extending daily time allotments
if enough members start using JOHNPUB.

RESEARCH AT HITACHI
By Paul Cooper

A recent article in the "IEEE Review"
provided a fascinating glimpse of what we
can look forward 1o in compact storage
devices for our compaters.

To celebrate its 80th anniversary,
Hitachi put on in London an exhibition
called "Hitachi Technology 1991",

Perhaps the most spectacular display
was a simple photograph labeled "The
World's Tiniest Message”. It showed the
surface of a molybdenum-disulphide
specimen where individual atoms of sulphur
had been carefully removed to spell oul a
simple message. Hitachi scientists used a
tungsten probe with a tip the size of a
single atom to do the job.

It is generally recognized that the
ultimate in storage devices lies in the
exploitation of atomic-scale devices. Clearly
there is much more research to be done
before these technigues can be used to
mass-produce memory chips, for example.
However, we are told that the ultimate
alomic storage device may handle 1 Gbit of
memory in a space only 10 micrometres
ACToss!

Closer to the market place were some
prototype 64-Mbit memory chips. The
Company also manufactures large-scale
magnetic disks and their latest model,
claimed to be the world’s largest, will store
35 Gbytes. This would be equivalent to
1000 years copies of "The Times" of
London. The Company's latest optical disc
holds 7 Gbytes, and its library unit stores
448 Gbytes with 64 discs. Another "world's
largest” was ils cartridge tape library with
a storage capacity of 1300 Gbytes.

We also read that the area density in

magnetic storage today is around 100
Mbits/sq. inch. Ten years ago it was 10
Mbitsfsq. inch. The trend is likely to
continue so that area densities of 1 Gbil/sqg.
inch, and 10 Gbits/sq inch will be achieved
by the year 2000.

The exhibition presented Hitachi's
work in High Definition TV (HDTV). Its
latest camera provides pictures with 12,000
lines resolution... your home TV chugs
along on 525 lines... Its VCR uses digitally-
encoded video running at 1200 Mbits/s,
with no picture degradation in recording or
playback.

Back 1o those memory chips. In
microlithography, the Company i8 aiming
for 0.1 um linewidth, almost an order of
magnitude better than the target in the
1980s. It is looking for ways of achieving
a 1 Gbit memory chip, a processing
capacity of 1 billion instructions per second
and telecommunication transmission rates
above 40 billion bits per second.

How are these targets to be achieved?
The 1 Mbit DRAM is now widely used in
the industry, as most PCs contain at least a
dozen of them. The 4 Mbit DRAM is now
in volume production and the 16 Mbit
DRAM is in development.

2 »+w+~ﬁ++¢w¢xw&r¢wx?»x»ﬁ a:a--ﬂ-g's-q:«q-w?pg:»«sx
i e e o

o qh-:»iﬁmc«s R
i m—u -m:-,:.- !

Hitachi has already announced a lab-
prototype 64 Mbit DRAM operating on a
single 1.5 Volt power supply. The chip,
which has a memory cell 0.8 x 1.6 um,
could store about 400 pages of "The Times"
and should be in mass production by
1994-95 while the labs are even now
looking at a 265 Mbit DRAM and beyond.

All this is a far cry from the
Company’s modest beginnings in 1910,
when it was producing and repairing
electric motors and generators. Today,
Hitachi claims to be the third largest
electrical and electronics company in the
world with annual sales of $44 billion US
and 291,000 employees. In 1989, it spent
52.2 billion US on R&D, or nearly 5% of
its sales. Not many Canadian electronics
companies c¢an claim 1o spend that
percentage of their revenues on R&D.

Page 2 The Ottawa PC Users' Group March 1991

)

THE DOS ENVIRONMENT

h By Robert Parkinson

PATCHING COMMAND.COM

Instead of using the /E:nnnn switch in
the SHELL command or using a plethora of
dummy wvariables, | personally prefer to
increase the defsult DOS environment
space by patching the working copy of
COMMAND.COM. Not for the faint of
heart, but very effective!

This solution nol only automatically
increases the size of the Master
Environment Block, but also increases the
size of any active copy. This palch was
originally published in PC Magazine to
allow their readers 1o expand the
overly-constrained environment in the
earlier versions of DOS.
Memory-resident Programs and the
Environment

I won't go into detail about what a
memory-resident program is or how it
differs intemally from a normal program. In
general terms, a memory-resident program,
when called, execules some inilialization
actions and then terminates, leaving a piece

of it's code behind to perform some action

'in specific circumstances. You might think
of COMMAND.COM itself as nothing
more than a special form of
memory-resident program.

I will call these programs TSRs
(Terminate-and-Stay-Resident). There are
three types of TSRS and the differences
between them are mostly of concem to
programmers.

When you load a TSR, for example
from your AUTOEXEC.BAT (file,
COMMAND.COM tells the DOS kemel to
take this action. This action is quile
automatic, whether or not the TSR will
make the slightest use of the environment,

The only possible use that a TSR can
make of this copy of the environment is
during its initial loading, as the copy will
not necessarily be valid after that.

Most TSRs do not require this
environment information, but there are
exceptions which I'll mention later on. This
copy of the environment takes up valuable
RAM space, over and above the actual
space required by the TSR code itself. A
well-wrilten TSR program will, after it's
initialization, free the space used by its own
" internal initialization code and, since that
space will be at the top of the block of
memory allocated to the program, it

immediately becomes usable again by DOS.

It is quite easy for a TSR to de-allocate
the space used by ils environmenl copy as
well and many of the better TSRs do this.
As an aside, one consequence of this is
that, prior to DOS 4.0, most of the
programs that examine your memory will
be unable to determine the name of this
obliging TSR, as the only place where the
name is located is in the associated
environment block which is now gone.

Going back to my main point, since this
small piece of newly-freed space is located
in memory below the program code, it is
nol contiguous with the main block of free
memory. It may well not be usable by DOS
and will remain an orphan. But if you
examine your memory map, you will find
that this is not always the case.

If the next block of memory required
by DOS, for either a program or ils
environment, is equal or smaller in size 1o
this small block of free memory, DOS may
well use it. In fact, DOS may reuse this
space time after time for successive
temporary programs. Its location makes no
difference at all to the owner programs.

As a point of interest, even Microsoft is
starting to try to save unnecessary use of
RAM, though you might not think so when
you look at the large growth in DOS
system files. Some of the external DOS 4.0
TSR programs (e.g. APPEND, GRAPHICS
and MODE) now free up their environment
block space after loading.

If you check your memory usage wilh
programs like those | mentioned earlier,
you will find that your TSRs are each being
given from 200 to 500 bytes of
environment space. The actual amount
depends, of course, on how complex your
environment was at the moment the TSR
was loaded. Well if you are like me and
have a fairly complex environment set and
about 10 to 15 TSRs at any given time, few
of which free up their environment space,
you could have 4000 or more byles of
RAM tied up, unavailable o any other
program and of absolutely no use to the
TSRs.

So, how can you get this RAM back?
The simple answer is that you can't
However, you can avoid losing most of this
memory in the first place. But you can't
reduce the loss to zero,

You avoid losing this memory by
carefully controlling the order of your
entries in your AUTOEXEC.BAT file.
First, do the initial housekeeping chores,

such as setting the system clock (if
necessary), copying files to your RAM
drive, etc, Then load all of your TSRs. As
you haven't set your PATH yet, you will
have to specify the full path/filename for
each. Then put in all of the appropriale
environmental variables with SET,
COMSPEC, PROMPT, APPEND, elc.

Lastly, set your PATH. Use one of the
memory-checking programs mentioned
above before you change your
AUTOEXEC.BAT and then again after.
You will probably find that you have saved
thousands of bytes of memory.

Al the present time, my own system
automatically loads 12 TSRs. Excluding the
1024-byte Master Environment Block, I am
currently using a total of about 384 bytes of
RAM for the 12 useless environment
copies, instead of the former 4500 plus
bytes.

Unfortunately, this does not apply Lo all
TSRs. For example, some expect to have a
copy of the PATH permanently available to
them. If you use the Logitech mouse
programs, you will find that CLICK.EXE
falls into this category. The MOUSE.COM
driver and LOGIMENU.COM don't use the
PATH.

Well, here you have two choices. The
casiest way is to load CLICK.EXE after
you have set your PATH. The other choice,
and the one [prefer, s to load only
MOUSE.COM in the AUTOEXEC.BAT
file before 1 set the PATH.

The other two programs take up almost
20KB of RAM, including their copies of
the environment, so I don’t really want
them as TSRs. [don't use CLICK.EXE at
all. Rather, I invoke LOGIMENU.COM for
cach appropriate application program in the
batch file that calls up the program.

{To be continued)

BEGINNERS® GROUP

Immediately prior to monthly
OPCUG meetings, special sessions
are held where beginners can ask
questions and discuss problems. The
next session will be on Tuesday,
March 26th, at Rideau High School
at 7:00 p.m. Time permitting, there
is wusually a special topic for
discussion. For more information,
phone Eric Clyde at 749-2387.

March 1991 The Ottawa PC Users' Group Page 3

PROLOG
Predicating with Examples

By Jose Campione

A Prolog program can be very simple.
For example, the following code represents
a complele Prolog program that can be
compiled as a stand-alone EXE file.
Running it will display the "Hello
Copenhagen!™ message on the screen:
goal

write("Hello Copenhagen!™)
but most frequently a Prolog program
comprises four sections: domains,
predicates, clauses and the goal. Amazingly,
none of them is absolutely required.

The domains corresponds to the "type”
section in a Pascal program. All new
user-defined predicates have to be declared
in the predicates section, and have to be
developed within the clauses section. The
goal is only required if the program is
expected to run as a Stand-alone
application.

The goal is the clause which allows the
program to start by itself without the need
for interactive input. The interactive use of
Prolog gives it ils great flexibility with
database gueries (SQL came after Prolog...),
but the ability of PDC Prolog to include the
goal inside the program permils ils use as a
serious development.

The concepts required for an effective
us¢ of Prolog include clarity, flow paitemns,
unification, failing, backtracking, the cut,
tail recursion and the use of the dynamic
database, These can be best assessed by
their use in an example.

Let's consider a simple routing problem
modified from one of the examples in the
PDC Prolog User's Guide (pp. 464-4606, file
CH20EX0Z.PRO in the EXAMPLES
subdirectory). In fact, the original program
has an error: The last call to route reads:

route{ Townl, Town2, Distance) :-
road(Townl, X, Distl), -
route(X, Town2, Dist2), <-
Distance=Dist1+Dist2, .
which cawses a "non-tail-recursive"
recursive call of route (more aboul this
later...). It should be modified to read:
route(Townl, Town2, Distance) :-
road(Townl, X, Distl),
-> road(X, Town2, Dist2), <-

Distance=Dist1+Dist2, 1.

Here is the complete example:

% Example 1.-

, 5

M modified from example
CH20EX02.PRO */
domains
town = symbaol
distance = integer
database
road{town, town, distance)
predicates
assert_db
nondeterm route(town, town,
distance)
clauses
assert_db:-
assert(road({tampa, houston, 2000)),
assert(road(gordon, tampa, 300)),
assert(road(houston, gordon, 1009),
asseri{road(houston, kansas_city,
120)),
assert(road(gordon, kansas_city, 130).
route(Townl, Town2, Distance) :-
road{Town1, Town2, Distance).
route(Townl, Town2, Distance) :-
road(Townl, X, Dist1),
road(X, Town2, Dist2),
Distance=Dist1+Dist2, L.
goal
assert_db,
route(tampa, kansas city, X),
write(" Distance :",X,"\n").
Notice the structure: domains, predicates,
clauses, goal. There is no restriction on the
order of these sections except that domains
declarations need to precede their use in
predicate declarations.

There can also be multiple declarations
for each of these sections with the
exception of the goal and the database. For
the database there is a way oul, multiple
declarations can refer to different databases:

database - first_database
database - second dalabase

The use of the "-" separator 5 mandatory.

sections for "constants” can also be
declared, as well as "global" sections for
interfacing domains, predicates and clauses
across several modules in a "project”. But
even multi-modular projects can have only
one goal {much like in real life, one goal is
all that is required... albeit soccer fans
would argue that multiple goals could make
the language more interesting...).

Let's pay attention to some delails. The
first line starts with a "%" character. This is
one of the two ways in which comments

can be introduced. All characters on a line
following this character will be ignored by
the compiler.

The 3rd line shows the other way. The
comment can be bracketed between /* and
*/ (If it looks familiar, you must be a "C"
programmer...). The domain "town" is
defined as a "symbol". This could also have
been designed as a string. Prolog has two
different ways to handle sirings: as
"symbols" or "strings”.

Defining a string as a symbol does not
requireé the use of quotation marks (")
except if it includes spaces. Symbols are
internally referenced with pointers kept in
a look-up table which means that they have
a very fast access. Strings, on the other
hand, allow the use of many string-handling
predicates. It is up to the individual
programmer Lo determine which domain is
besl 10 use.

Other commonly used standard domains
include "char", "integer” and "real”. There
are other standard domains and, of course,
using them, the user can define his own.

The predicate road defines the "object”
road com of a "functor" (the word
"road” preceding the parenthesis) and three
"arguments” (lown, lown and distance).

Because it has three arguments, the
predicate is considered Lo have an "arily" of
3. Since Turbo Prolog 2.0 predicates can be
declared with the same functor and
different arities, this can be extremely
useful. The program will identify which one
is being called by matching the appropriate
domains and number of the arguments.

For example, another road predicate
could have been defined to include the
number of gas stations:

road{town,lown,distance,gas_stalions)
Of course, gas_stations would have had to
be defined as an integer in the domains
section:

gas_slalions = integer
Note also the use of capital casing.

Prolog requires that all variables start
with a capital case character. This can be
confusing because programmers somelimes
us¢ the same¢ work as a functor or a
variable just by changing the case in the
first letter.

Did you notice the "I" at the end of the
sccond route clause? This is not to call
vour attention at that particular line of code,
this is the very infamous "cut”. Without any
doubt the most difficult thing to understand
for any programmer experienced in
procedural languages. More on this later.

Page 4 The Ottawa PC Users’ Group March 1991

-

ﬁ

.-r-l..,"l

PROLOG

-

(Continued from Page 4)

Did you also noticed the ":-" sign
separating the head from the body of each
rule? This can be replaced by "if". It also
can be visualized as a face lying on its side
ready to smile if it succeeds (:-)) or to cry
if it does not (:-(). Also the commas ",” can
be replaced by "and". This may help to
follow the logic in a rule.

This use of "if" has nothing to do with
the conditional "if" in the "if then" syntax
in Turbo Pascal or other procedural
languages. The "if then" logic in Prolog can
be reproduced by subsequent calls to the
same clause as will be seen later, but after
one gets used to Prolog, the terms "if then”
and the "for do® or "while do" loops
become quite superfluous. This may seem
difficult to believe, bul nevertheless, it is
true...!

On the last line, notice how Prolog

differentiates single characters from strings.
Characters are bracketed by single quotation
marks ('") while sirings require double
quotation marks ("").
P.. The "\" character is an escape characler
+ which identifies the next character as one
with a special meaning. *\n' is the camriage
retum characier, and it ¢can be embedded
inside any string. The slash-bar character
itself can be used in a string by repeating it
Iwice,

The following is a cormect string
representing a DOS file name:
C:\prologiitools\\screeniiscrhnd. pro

As the program starts, the first available
predicate in the database is assert_db. As il
is called, the five facts indicated in it are
"asserted” into the dynamic database.

‘Then, the route predicate is called
which in turn calls the first appearance of
the road predicate in the route clause. Then,
the road predicate is "unified” with the first
fact in the database.

If one could see it,
something like this:

route{Townl, Town2, Distance) - ->

road(tampa, houston, 20K). <-
route{Townl, Town2, Distance) :-
road(Townl, X, Dist1),

read(X, Town2, Disi2),

Distance=Dist1+Dist2, I
?-\and immediately after:

> route(tampa, houston, 200) - <-

road{tampa, houston, 200).

route{Townl, Town2, Distance) :-

it would look

road(Townl, X, Distl),
road(X, Town2, Dist2),
Distance=Dist1+Disi2, !.
then unification with the goal is attempted:
goal
-> route(lampa, kansas_city, X), <-
write("Distance = " X,"\n").
which, off course, fails because (as every
Texan would know) houston cannolt be
unified with kansas_city. If the goal
had stated route{tampa, houston, X) then it
would have succeeded, X would have been
unified with 200 and the third line of the
goal would have been called displaying the
distance and ending the program. Because
it fails, the program backtracks to the last
call with alternate solutions, which in this
case is road itsell:
-> route{gordon, tampa, 30{) :- <-
-> road{gordon, tampa, 300). <-
route(Townl, Town2, Distance) :-
road({Townl, X, Distl),
road(X, Town2, Dist2),
Distance=Dist1+Dist2, L
This will fail again. In fact since the
road between tampa and kansas_cily is nol
a fact in the database, all tries will fail
causing the first route clause o fail Loo.
When this happens, Prolog will backirack
to the alternate solution for route:
route{Townl, Town2, Distance) :-
road(Townl, X, Distl),
road(X, Town2, Dist2),
Distance=Dist1+Dist2, 1.
and the facts in the database will be
explored again by the rcad predicate.
Because this is now a second clause of
route the pointer in the database is reset
and the database is again searched from the
beginning:
route{Townl, Town2, Distance) :-
-> road(Townl (= tampa),

X (= houston), Dist1 (= 200)), <-
road(X, Town2, Dist2),
Distance=Dist] + Dist2, !,

Mow, road is called a second time, also
from the top of the database:
route(Townl, Town2, Distance) :-
road(Townl (= tampa),
X (= houston), Distl (= 200)),
-> road(X (= tampa),
Town2 (= houston),
Dist2 (= 200)), <-
Distance=Dist1 + Dist2, !.
which of course fails (because X cannot be
= fampa and = houston at the same time).
This will generate backtracking to the
last call of road which then will be
successively unified to subsequent facts in

the database:

route(Townl, Town2, Distance) :-

road(Town1 (= tampa),

X (= houston),
Distl (= 200)),
-> road(X (= gordon),
Town2 (= tampa),
Dist2 (= 300)), <-

Distance=Dist1 + Dist2, L.

which will fail gain:
route(Townl, Town2, Distance) :-
road(Townl (= tampa),
X (= houston), Dist1 (= 200)),
-> road(X (= pordon),
Town2 (= tampa),
Dist2 (= 300)), 5

Distance=Dist] + Dist2, L.
but not the next one...:
route(Townl, Town2, Distance) :-

road{Townl (= tampa),

X (= houston), Dist1 (= 200)),

-> road(X (= houston),

Town2 (= gordom),
Dist2 (= 100}), <-

Distance=Dist1 + Dist2, 1.
which succeeds; Distance gets bound o
300 (= 200 + 100) and route looks like
this:

-> route(tampa, gordon, 300) :- <-
road(tampa, houston, 200),
road{houston, gordon, 108),

300 = 200 + 100, !,

Back to the goal, it fails again:
goal

-> route(tampa, kansas city, X), <-
write(" Distance = ", X,"\n").

Back to the drawing board...:

route(Townl, Town2, Distance) :-
road(Townl (= tampa),
X (= housten), Dist] (= 200)),

-> road(X (= houston),

Town2 (= kansas_city),
Dist2 (= 120)), <-

Distance=Dist1 + Dist2, !.

This will bind route to... tampa and
kansas_city! Hallelujah! This will also
cause the goal to succeed and (would you
believe?) the distance displayed by the next
predicate will be of 320 kilometers? miles?
who cares...! The program has succeeded!
Furthermore, it will politely exit to DOS (if
it was compiled as a stand-alone
application) or to the PDC Prolog editor (if
you were using the user development
interface).

Next month, I will continue with more
examples and features.

Page 5 The Ottawa PC Users' Group March 1991

THE LAN TUTORIAL SERIES
By Aaron Brenner
PART 2: Protocols

Definition

The LAN Magazine "Glossary of LAN

Terms" defines a protocol this way: A set
of rules for communicating between
computers. Protocols govern format, timing,
sequencing and error control. Without these
rules, the computer will not make sense of
the stream of incoming bils.
But there is more. Communicating data
from computer o computer takes many
steps. For example, suppose you are
sending a file from one computer to
another. The file has to be broken into
pieces. The pieces have to be grouped in
certain fashion.

Information must be added to tell the
receiver where each group belongs in
relation to others. Timing information must
be added. Error correcting information must
be added, and so on.

Because of this complexily, computer
communication is usually broken down into
steps. Each step has its own rules of
operation, its own protocol. These steps
must be executed in a certain order, usually
from the top down on transmission and
from the bottom up on reception. Because
of this hierarchical arrangement, the term
protocol stack is used to describe the
different steps of computer communication.

A protocol stack is simply a set of rules
for communication, only it can be broken
down into sets of rules for each step in the
sequence.

Protocols, Really

What is a protocol, really? It is software
that resides either in a computer's memory
or in the memory of a transmission device
like a network interface card. When data is
ready for (ransmission, this software is
execuied. It prepares data for transmission
and sets it in motion. At the receiving end,
it takes the data off the wire and prepares it
for the computer, taking off all the
information added by the transmitting end.
S0, protocols are just software that
performs data transmission.

But there is more. Confusion is caused
by the fact that there are many protocols,
many different ways of getting data from
one place to another. Novell does it one
way. 3Com does it another. DEC does it a
third way. And since the transmitter and the

receiver have to "speak” the same protocol,
these three can't talk directly to each other.
That's where the term prodocol standard
and the OS] Model fit in,

A protocol standard is a set of rules for
computér communication that has becn
widely agreed upon and implemented by
many vendors, users and standards bodies.
Ideally, a protocol standard should, when
implemented, allow people to talk to each
other, even il they are using equipment
from different vendors.

Of course, you don't have to have a
"standard” protocol to communicate. You
can make up your own. The only problem
is that you are limited to talking to
yourself.

Let's look at some of the protocol
standards that exist and see if we can’t get
a feel for how protocols work. As you will
see, there are many siandards -- none of
which can be called universal.

The OSI Model

The OSI Model is the best place to start
because it is a full protocol stack. It is a set
of protocols that attempt to define and
standardize the entire process of data
communications (some protocol standards
only define part of the process). The OS]
Model - which stands for the Open
Systems Interconnection Model of the
International Standards Organization (ISO)
-- has the support of most major computer
and network wvendors, along with many
large customers and the U.5, government,

The OS] Model is really nothing more
than a concept, describing how data
communications should take place. It
divides the process into seven layers. Into
these layers fit protocol standards developed
by the IS0 and by other standards bodies.
At each layer, there are numerous
protocols. That is, the OS] is not a single
definition of how data communications
actually takes place in the real world. It just
says, "This is the way things should be
divided and these are the protocols that you
can use at each layer.," As long as a
network vendor chooses one of the
protocols at each layer, the network should
work with other vendors® offerings.

Nobody really believes the hype that the
OS5I Model will lead to complete,
transparent intercommunication between all
computers. We are just hoping it is a step
in the right direction.

Each successive layer of the OS] Model
works with the one below it. Remember,
protocol stacks are not democratic; they are

rigidly hierarchical. Each layer of the OSI

Model is modular. That is, you may =,

(theorctically) substitute one protocol for
another at the same layer withoutl affecting
the operation of layers above or below.

For example, you should be able to use
a Token Ring board or an Ethernet board
and still use all the other pieces of your
network, including network operating
system, transport protocols, internetwork
protocols, applications interfaces, etc. Of
course, vendors must create these products
to the OSI Model specifications for this o
work.

The OSI Model’s modularity should
become clear as we describe the major
protocols that conform to il. First a look at
what each layer is supposed o do.

1. Physical Layer. The first, or Physical
layer, of the OS] Model conveys the
biis that move along the cable. It is
responsible for making sure that the raw
bits get from one place to another, no
matter what shape they are in. It deals
with the mechanical and electrical
characteristics of the cable.

2. Data Link Layer. The second, or Data
Link, layer of the OSI Model is
responsible for getting data packagu;:{r
and onto the network cable. 1t manage.
the physical transfer, providing the
blocks of data, their synchronization,
error control and flow control. The Data
Link layer is often divided into two
parts -- Logical Link Control (LLC) and
Medium Access Control (MAC) --
depending on the implementation.

3. Network Layer. The third, or Network,
layer of the OS5l Model establishes,
maintains and terminates connections. It
is responsible for translating logical
addresses, or names, into physical
addresses.

4. Transport Layer. The fourth, or
Tranport, layer of the OSI Model
ensures data is senl successfully
between the two computers. If data is
senl incorrectly, this layer has the
responsibility to ask for retransmission.

5. Session Layer. The fifth, or Session,
layer of the OS] Model decides when to
turn communication on and off between
two computers. It coordinates the
interaction between them. Unlike the
network layer, it is dealing with the
programs running in each machine to—
establish conversations between them.

6. Presentation Layer. The sixth, or
Presentation, layer of the OS5I Model

Page 6 The Ottawa PC Users’ Group March 1991

("gl

does code conversion and data
reformatting. It is the translator of the
network, making sure the computer is
talking in the right language for the
network.

7. Application Layer. The seventh and
final, or Application, layer of the OS]
Model is the interface between the
software running in the computer and
the network. It supplies functions to the
software in the computer, like
electronic mail or file transfer.

Unfortunately, protocols in the real
world do not conform precisely to these
neat definitions. Some network products
combine layers. Others leave out layers.
Still others break apart layers. But no
matter what, all working network products
achieve the same resull, getting data from
here to there. The question is, do they do it
in a way compatible with the rest of the
world’s networks? More important, do they
carc?

Popular Physical Protocols

Hopefully, all of this will become
clearer if we look at some real protocols
and compare them to the OS] Model.

The best known physical layer
P’mdards of the OS] Model (there are a
few), are those from the IEEE, the Institute
of Electrical and Electronic Engincers. Thal
is, the ISO adopted some of the IEEE's
physical network standards as part of ils
0SI Model. These are IEEE 8023, or
Ethernet, IEEE 802 4, or token-passing bus
and IEEE 802.5, or Token Ring.

These three standards define the
physical characteristics of the network and
how to get raw data from one place to
another. Each is a Layer 1 standard. They
also define how people can use the network
at the same time without bumping into each
other. Technically, this last part is a job for
the Data Link layer, Layer 2. We will deal
with this later. For now, let’s see just what
these standards mean.

IEEE 802.3 defines a physical network
that has a bus (straight line) layout. Data is
broadcast throughout the network in no
particular physical direction. All machines
receive every broadcast, but only those
meant to receive the data respond with an
acknowledgement.

Network access is determined by a

rotocol called Carrier Sense Multiple
Jwcess With Collision Detection, or
CSMA/CD. It lets everyone send whenever
they want. If they bump into each other,

they back off, wait, and send again until
they get through. Thus, the more users, the
more crowded and slower the network --
like the freeway. (More on network access
later).

IEEE 802.4 defines a physical network
that has a bus layout. It is also a broadcast
network. All machines receive all data but
do nol respond unless data is addressed o
them.

Network access is determined by a
token that moves around the network in a
logical fashion. It is broadcast to every
machine but only the machine that is next
for the token geis il

Once 8 machine has the token, and not
before or after, it may transmit data. The
MAPF/TOP (Manufacturing Automation
Protocol/ Technical Office Protocol)
standard uses this protocol.

IEEE 802.5 defines a physical network
that has a ring layout. Data moves around
the ring from station to station. Each station
regenerates the signal from the previous
station. In this way it is nol a broadcast
network. The neiwork access protocol is
loken-passing. The difference is that the
token moves aboul in a ring, rather than
over a bus.

IBM, Texas Instruments and
Ungermann-Bass are the only vendors of
the chips needed to make Token Ring
network interface cards. Nevertheless, it is
fast becoming one of the most popular
network hardware options.

There are other Physical and Data Link
layer standards, some that conform to the
0O5I Model and others that don’t. The most
famous that does not is Arcnet. It uses a
token-passing bus access method, bul not
the same one as IEEE 802 4.

A new physical standard called Fiber
Distributed Data Interface (FDDI) is a 100-
Mbits-per-second physical protocol using
token ring over fiber optic cable. It will
probably be OSI-compatible.

Data Link Protocols

As we said, the [EEE protocol
standards are not confined to the Physical
layer but also work at the Data Link layer.
We also said that the Data Link layer is
often divided into two parts.

The upper part is called Logical Link
Control (LLC) and the lower part is called
Medium Access Control (MAC). As it tumns
out, the IEEE standards define the lower, or
MAC, half of the Data Link layer -- the
part that determines how network users
keep from bumping into each other.

Medium Access Control is just what il
sounds like. It is the protocol that
determines which computer gets o use the
network cable when many computers are
trying. We saw that [EEE 8023 lets
everyone simply bump into each other and
keep trying until they get through, IEEE
802.4 and 802.5 are more ordered, limiting
conversation to the computer with the
token.

Remember, all of this is done in
fractions of a second. So even when the
network is crowded, no one really wails
very long for access on any of the three
types of networks.

The other half of the Data Link layer,
LLC, provides reliable data transfer over
the physical link. In essence, it manages the
physical link.

There are two reasons why the IEEE
split the Data Link layer in half (and why
the ISO accepted it). First of all, the Dala
Link layer has two jobs to do. The first is
to coordinate the physical transfer of data.

The second is to manage access to the
physical medium. Splitting the job allows
for more modularity, and therefore
flexibility.

The second reason also has 1o do with
maodularity, but in a different way. The type
of Medium Access Control has more to do
with the physical requirements of the
network than actually managing the transfer
of data. In other words, the MAC layer is
"closer” to the physical layer than the LLC
layer.

By splitting the two, it 8 possible to
create a number of MAC layers
(corresponding to physical layers) and just
one LLC layer that can handle them all.
This increases the flexibility of the
standard. It also gives LLC an important
role in providing an interface between the
various MAC layers and the higher-layer
protocols,

By the way, Logical Link Control is the
more common name of the IEEE’s 802.2
specification. The numbers give it away.
&02.2 works with 802.3, 802.4 and 802.5. It
should also work with emerging standards,
like FDDI.

There are other protocols that perform
the LLC functions. High-level Data Link
Control (HDLC) is the protocol from the
IS0.

(To be continued)

L

Page 7 The Cttawa PC Users’ Group March 1991

OTTAWA PC USERS' GROUP

EXECUTIVE
Chairman Douglas Poulter 745-8768
Past Chairman David Terroux 238-4805
Treasurer Tony Frith 671-0401
Secretary Norman Dafoe T23-1909
Newsletter Editor Bonnie Carter 236-1015
Software Librarian Chris Taylor 723-1329
Membership Chairman Harald Freise 828-3411
Convenor Paul Green 820-5348
BBS System Operator Jean Fortier 236-1015
Hardware/Software Broker Terry Mahoney 225-2630
226-2615 FAX
ASSISTANTS
Assistant Newsletter Editor Jean Fortier 236-1015
Newsletter Assistants Chris Taylor 723-1329
Ann Falkner 722-3226
David Smith 837-9291
Software Assistant John Ings 235-8132
Membership Assistant Marc Riou 733-2002
BEGINNERS' SESSIONS Eric Clyde 749-2387
DISK OF THE MONTH OPCUG MEMBERSHIP FEES
One-year subscription (10 Disks) 5.25" $25.00
One-year subscription (10 Disks) 3.5" $35.00 Membership fees for one year §25.00
Individual 3.5" disk surcharge $2.00

THE OTTAWA PC USERS’ GROUP MEMBERSHIP APPLICATION - Please Print

Last Name: First Name:

Mailing Address:

Postal Code: Telephone - Home: Office:

Profession: Diate of Birth: Sex: M

Disk of the Month: YES (8] Size: 5 14" i Amount Enclosed 5

Are you: A new member? Kenewing your membership? Sponsor’s Name:

What in particular interests you in the Group?

Can you help in Group activities? Check off the activities that apply: Progmmming Language Instruction

Newsletter Input Memberships Software Library Promotion/Publicity

Hardware Techniques Meeting Locations Agendas & Speakers Advertising

Bulletin Board Other

What hardware/software do you own and/or use?

Page 8 The Ottawa PC Users' Group February 1991

